Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.576
Filter
1.
Article in English | MEDLINE | ID: mdl-38743471

ABSTRACT

Rhizobia are bacteria that form nitrogen-fixing nodules in legume plants. The sets of genes responsible for both nodulation and nitrogen fixation are carried in plasmids or genomic islands that are often mobile. Different strains within a species sometimes have different host specificities, while very similar symbiosis genes may be found in strains of different species. These specificity variants are known as symbiovars, and many of them have been given names, but there are no established guidelines for defining or naming them. Here, we discuss the requirements for guidelines to describe symbiovars, propose a set of guidelines, provide a list of all symbiovars for which descriptions have been published so far, and offer a mechanism to maintain a list in the future.


Subject(s)
Rhizobium , Symbiosis , Rhizobium/genetics , Rhizobium/classification , Fabaceae/microbiology , Nitrogen Fixation , Root Nodules, Plant/microbiology , Guidelines as Topic
2.
Plant Signal Behav ; 19(1): 2349868, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38743594

ABSTRACT

The purpose of this study was to analyze the role of transcription factor in Desmodium styracifolium, proving that the DsWRKY6 transcription factor was related to the plant phenotypes of Desmodium styracifolium - cv. 'GuangYaoDa1' and it could be used in molecular-assisted breeding. 'GuangYaoDa1' was used as the material and its DNA was the template to clone DsWRKY6, the transgenic Arabidopsis thaliana line was constructed by agrobacterium tumefaciens­mediated transformation. Transgenic Arabidopsis thaliana was cultivated to study phenotype and physiological and biochemical indexes. Phenotypic observation showed that DsWRKY6 transgenic Arabidopsis thaliana had a faster growth rate while compared with the control group, they had longer lengths of main stem, lateral branches of cauline leaves, and root, but a lower number of cauline leaves and lateral branches of cauline leaves. And it also showed that their flowering and fruiting periods were advanced. The results of physiological and biochemical indexes showed that the relative expressions of DsWRKY6 increased and the abscisic acid content significantly increased in DsWRKY6 transgenic Arabidopsis thaliana compared with the control group. According to the above results, DsWRKY6 could regulate the advancing of flowering and fruiting periods caused by the improvement of abscisic acid content, and expression of the DsWRKY6 transcription factor might be the cause of the upright growth of 'GuangYaoDa1'.


Subject(s)
Arabidopsis , Cloning, Molecular , Plant Proteins , Plants, Genetically Modified , Transcription Factors , Arabidopsis/genetics , Arabidopsis/metabolism , Plants, Genetically Modified/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Plant , Fabaceae/genetics , Fabaceae/metabolism , Phenotype , Abscisic Acid/metabolism , Genes, Plant
4.
Euro Surveill ; 29(19)2024 May.
Article in English | MEDLINE | ID: mdl-38726694

ABSTRACT

Listeria monocytogenes (Lm) is a bacterium widely distributed in the environment. Listeriosis is a severe disease associated with high hospitalisation and mortality rates. In April 2019, listeriosis was diagnosed in two hospital patients in Finland. We conducted a descriptive study to identify the source of the infection and defined a case as a person with a laboratory-confirmed Lm serogroup IIa sequence type (ST) 37. Six cases with Lm ST 37 were notified to the Finnish Infectious Diseases Registry between 2015 and 2019. Patient interviews and hospital menus were used to target traceback investigation of the implicated foods. In 2021 and 2022, similar Lm ST 37 was detected from samples of a ready-to-eat plant-based food product including fava beans. Inspections by the manufacturer and the local food control authority indicated that the food products were contaminated with Lm after pasteurisation. Our investigation highlights the importance that companies producing plant-based food are subject to similar controls as those producing food of animal origin. Hospital menus can be a useful source of information that is not dependent on patient recall.


Subject(s)
Disease Outbreaks , Food Microbiology , Listeria monocytogenes , Listeriosis , Humans , Listeria monocytogenes/isolation & purification , Listeria monocytogenes/genetics , Listeriosis/epidemiology , Listeriosis/microbiology , Finland/epidemiology , Female , Male , Foodborne Diseases/epidemiology , Foodborne Diseases/microbiology , Middle Aged , Aged , Food Contamination , Adult , Fabaceae/microbiology
5.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731484

ABSTRACT

In this study, we developed a green and multifunctional bioactive nanoemulsion (BBG-NEs) of Blumea balsamifera oil using Bletilla striata polysaccharide (BSP) and glycyrrhizic acid (GA) as natural emulsifiers. The process parameters were optimized using particle size, PDI, and zeta potential as evaluation parameters. The physicochemical properties, stability, transdermal properties, and bioactivities of the BBG-NEs under optimal operating conditions were investigated. Finally, network pharmacology and molecular docking were used to elucidate the potential molecular mechanism underlying its wound-healing properties. After parameter optimization, BBG-NEs exhibited excellent stability and demonstrated favorable in vitro transdermal properties. Furthermore, it displayed enhanced antioxidant and wound-healing effects. SD rats wound-healing experiments demonstrated improved scab formation and accelerated healing in the BBG-NE treatment relative to BBO and emulsifier groups. Pharmacological network analyses showed that AKT1, CXCL8, and EGFR may be key targets of BBG-NEs in wound repair. The results of a scratch assay and Western blotting assay also demonstrated that BBG-NEs could effectively promote cell migration and inhibit inflammatory responses. These results indicate the potential of the developed BBG-NEs for antioxidant and skin wound applications, expanding the utility of natural emulsifiers. Meanwhile, this study provided a preliminary explanation of the potential mechanism of BBG-NEs to promote wound healing through network pharmacology and molecular docking, which provided a basis for the mechanistic study of green multifunctional nanoemulsions.


Subject(s)
Antioxidants , Emulsifying Agents , Emulsions , Glycyrrhizic Acid , Molecular Docking Simulation , Wound Healing , Wound Healing/drug effects , Animals , Emulsions/chemistry , Emulsifying Agents/chemistry , Emulsifying Agents/pharmacology , Rats , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Green Chemistry Technology , Humans , Rats, Sprague-Dawley , Nanoparticles/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology , Fabaceae/chemistry , Male , Particle Size , Cell Movement/drug effects
6.
Planta ; 259(6): 132, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662123

ABSTRACT

MAIN CONCLUSION: Emblematic Vachellia spp. naturally exposed to hyper-arid conditions, intensive grazing, and parasitism maintain a high nitrogen content and functional mutualistic nitrogen-fixing symbioses. AlUla region in Saudi Arabia has a rich history regarding mankind, local wildlife, and fertility islands suitable for leguminous species, such as the emblematic Vachellia spp. desert trees. In this region, we investigated the characteristics of desert legumes in two nature reserves (Sharaan and Madakhil), at one archaeological site (Hegra), and in open public domains et al. Ward and Jabal Abu Oud. Biological nitrogen fixation (BNF), isotopes, and N and C contents were investigated through multiple lenses, including parasitism, plant tissues, species identification, plant maturity, health status, and plant growth. The average BNF rates of 19 Vachellia gerrardii and 21 Vachellia tortilis trees were respectively 39 and 67%, with low signs of inner N content fluctuations (2.10-2.63% N) compared to other co-occurring plants. The BNF of 23 R. raetam was just as high, with an average of 65% and steady inner N contents of 2.25 ± 0.30%. Regarding parasitism, infected Vachellia trees were unfazed compared to uninfected trees, thereby challenging the commonly accepted detrimental role of parasites. Overall, these results suggest that Vachellia trees and R. raetam shrubs exploit BNF in hyper-arid environments to maintain a high N content when exposed to parasitism and grazing. These findings underline the pivotal role of plant-bacteria mutualistic symbioses in desert environments. All ecological traits and relationships mentioned are further arguments in favor of these legumes serving as keystone species for ecological restoration and agro-silvo-pastoralism in the AlUla region.


Subject(s)
Fabaceae , Nitrogen Fixation , Desert Climate , Ecosystem , Ethnobotany , Fabaceae/parasitology , Fabaceae/physiology , Saudi Arabia , Symbiosis
7.
J Hazard Mater ; 471: 134282, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38657509

ABSTRACT

Microplastics (MPs) pose a threat to farmland soil quality and crop safety. MPs exist widely in food legumes farmland soil due to the extensive use of agricultural film and organic fertilizer, but their distribution characteristics and their impact on soil environment have not been reported. The abundance and characteristics of MPs, soil physical and chemical properties, and bacterial community composition were investigated in 76 soil samples from five provinces in northern China. The results showed that the abundance of MPs ranged from 1600 to 36,200 items/kg. MPs in soil were mostly fibrous, less than 0.2 mm, and white. Rayon, polyester and polyethylene were the main types of MPs. The influences of MPs on soil physicochemical properties and bacterial communities mainly depended on the type of MPs. Notably, polyethylene significantly decreased the proportion of silt particles, and increased the nitrate nitrogen content as well as the abundance of MPs-degrading bacteria Paenibacillus (p < 0.05). Moreover, bacteria were more sensitive to polyesters in soil with low concentration of organic matter. This study indicated that MPs in food legumes farmland soil presented a higher-level. And, they partially altered soil physicochemical properties, and soil bacteria especially in soil with low organic matter.


Subject(s)
Bacteria , Microplastics , Soil Microbiology , Soil Pollutants , Soil , China , Soil Pollutants/analysis , Soil/chemistry , Microplastics/analysis , Bacteria/classification , Fabaceae , Agriculture , Farms
8.
Trop Anim Health Prod ; 56(4): 140, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656670

ABSTRACT

This study evaluated three continuous grazing systems: Brachiaria Brizantha, Clitoria ternatea and naturalized pastures, complemented with commercial concentrate and C. ternatea silage on milk yield, nutrient use and enteric methane (CH4) emissions. Nine multiparous cows of local Zebu breeds, with an average weight of 448 ± 87 kg, were used. The chemical composition of the food was determined. Live weight, milk production, and quality were assessed. Furthermore, serum urea, urea nitrogen, creatinine and glucose in blood were monitored, and nitrogen use efficiency were calculated. Enteric methane (CH4) emissions were estimated using Tier-2 methodology. A 3 × 3 latin square experimental design was applied. The grazing systems of B. brizantha and C. ternatea had the greater live weights of 465.8 and 453.3 kg/cow, although the latter is similar to naturalized pasture. Milk production and quality were not affected by grazing system, with the exception of the non-fat solids, where the C. ternatea system was lower (102.2 g/kg) than the other grazing systems. The crude protein and N intake, and N excretion in feces and urine were lower in naturalized pasture systems (1139.0 g/day). N outputs in milk was high in the C. ternatea system (56.3 g/cow/day). The naturalized pastures systems showed the better feed use efficiency (25.7%) compared to others. Serum urea and blood urea nitrogen were greater in B. brizantha followed by C. ternatea. Enteric CH4 emissions were indifferent among grazing systems when expressed as a percentage of greenhouse gases (7.1%). In conclusion, the grazing C. ternatea supplemented with commercial concentrate and C. ternatea silage maintains milk production and quality, reduced cow/day emissions (by 2.5%) and lowered energy losses as methane.


Subject(s)
Animal Feed , Lactation , Methane , Milk , Animals , Cattle/physiology , Methane/analysis , Methane/metabolism , Female , Lactation/physiology , Milk/chemistry , Milk/metabolism , Animal Feed/analysis , Diet/veterinary , Animal Husbandry/methods , Silage/analysis , Animal Nutritional Physiological Phenomena , Brachiaria , Nitrogen/metabolism , Nitrogen/analysis , Nutrients/analysis , Nutrients/metabolism , Fabaceae/chemistry
9.
DNA Res ; 31(3)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38590243

ABSTRACT

Calophaca sinica is a rare plant endemic to northern China which belongs to the Fabaceae family and possesses rich nutritional value. To support the preservation of the genetic resources of this plant, we have successfully generated a high-quality genome of C. sinica (1.06 Gb). Notably, transposable elements (TEs) constituted ~73% of the genome, with long terminal repeat retrotransposons (LTR-RTs) dominating this group of elements (~54% of the genome). The average intron length of the C. sinica genome was noticeably longer than what has been observed for closely related species. The expansion of LTR-RTs and elongated introns emerged had the largest influence on the enlarged genome size of C. sinica in comparison to other Fabaceae species. The proliferation of TEs could be explained by certain modes of gene duplication, namely, whole genome duplication (WGD) and dispersed duplication (DSD). Gene family expansion, which was found to enhance genes associated with metabolism, genetic maintenance, and environmental stress resistance, was a result of transposed duplicated genes (TRD) and WGD. The presented genomic analysis sheds light on the genetic architecture of C. sinica, as well as provides a starting point for future evolutionary biology, ecology, and functional genomics studies centred around C. sinica and closely related species.


Subject(s)
Genome, Plant , Retroelements , Fabaceae/genetics , Chromosomes, Plant , Gene Duplication , Genome Size , DNA Transposable Elements , Evolution, Molecular , Terminal Repeat Sequences , Genomics , Introns , Phylogeny
10.
Int J Mol Sci ; 25(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38612427

ABSTRACT

Previously, we designed the EuK-based PSMA ligand BQ0413 with an maE3 chelator for labeling with technetium-99m. It showed efficient tumor targeting, but our preclinical data and preliminary clinical results indicated that the renal excretion levels need to be decreased. We hypothesized that this could be achieved by a decrease in the ligand's total negative charge, achieved by substituting negatively charged glutamate residues in the chelator with glycine. The purpose of this study was to evaluate the tumor targeting and biodistribution of two new PSMA inhibitors, BQ0411 and BQ0412, compared to BQ0413. Conjugates were radiolabeled with Tc-99m and characterized in vitro, using PC3-pip cells, and in vivo, using NMRI and PC3-pip tumor-bearing mice. [99mTc]Tc-BQ0411 and [99mTc]Tc-BQ0412 demonstrated PSMA-specific binding to PC3-pip cells with picomolar affinity. The biodistribution pattern for the new conjugates was characterized by rapid excretion. The tumor uptake for [99mTc]Tc-BQ0411 was 1.6-fold higher compared to [99mTc]Tc-BQ0412 and [99mTc]Tc-BQ0413. [99mTc]Tc-BQ0413 has demonstrated predominantly renal excretion, while the new conjugates underwent both renal and hepatobiliary excretion. In this study, we have demonstrated that in such small targeting ligands as PSMA-binding EuK-based pseudopeptides, the structural blocks that do not participate in binding could have a crucial role in tumor targeting and biodistribution. The presence of a glycine-based coupling linker in BQ0411 and BQ0413 seems to optimize biodistribution. In conclusion, the substitution of amino acids in the chelating sequence is a promising method to alter the biodistribution of [99mTc]Tc-labeled small-molecule PSMA inhibitors. Further improvement of the biodistribution properties of BQ0413 is needed.


Subject(s)
Fabaceae , Technetium , Animals , Mice , Tissue Distribution , Ligands , Chelating Agents , Glutamic Acid , Glycine
11.
Int J Mol Sci ; 25(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38612465

ABSTRACT

Ulcerative colitis (UC) is a relapsing and reoccurring inflammatory bowel disease. The treatment effect of Alhagi maurorum and stem cell extracts on UC remains unclear. The aim of the present study was to investigate the protective role of Alhagi maurorum combined with stem cell extract on the intestinal mucosal barrier in an intestinal inflammation mouse model. Sixty mice were randomly divided into a control group, model group, Alhagi group, MSC group, and MSC/Alhagi group. MSC and Alhagi extract were found to reduce the disease activity index (DAI) scores in mice with colitis, alleviate weight loss, improve intestinal inflammation in mice (p < 0.05), preserve the integrity of the ileal wall and increase the number of goblet cells and mucin in colon tissues. Little inflammatory cell infiltration was observed in the Alhagi, MSC, or MSC/Alhagi groups, and the degree of inflammation was significantly alleviated compared with that in the model group. The distribution of PCNA and TNF-alpha in the colonic tissues of the model group was more disperse than that in the normal group (p < 0.05), and the fluorescence intensity was lower. After MSC/Alhagi intervention, PCNA and TNF-alpha were distributed along the cellular membrane in the MSC/Alhagi group (p < 0.05). Compared with that in the normal control group, the intensity was slightly reduced, but it was still stronger than that in the model group. In conclusion, MSC/Alhagi can alleviate inflammatory reactions in mouse colonic tissue, possibly by strengthening the protective effect of the intestinal mucosal barrier.


Subject(s)
Colitis, Ulcerative , Fabaceae , Mesenchymal Stem Cells , Animals , Mice , Colitis, Ulcerative/drug therapy , Stem Cell Factor , Proliferating Cell Nuclear Antigen , Tumor Necrosis Factor-alpha , Inflammation , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
12.
Fam Med Community Health ; 12(Suppl 3)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609092

ABSTRACT

Storylines of Family Medicine is a 12-part series of thematically linked mini-essays with accompanying illustrations that explore the many dimensions of family medicine, as interpreted by individual family physicians and medical educators in the USA and elsewhere around the world. In 'IV: perspectives on practice-lenses of appreciation', authors address the following themes: 'Relational connections in the doctor-patient partnership', 'Feminism and family medicine', 'Positive family medicine', 'Mindful practice', 'The new, old ethics of family medicine', 'Public health, prevention and populations', 'Information mastery in family medicine' and 'Clinical courage.' May readers nurture their curiosity through these essays.


Subject(s)
Courage , Fabaceae , Lens, Crystalline , Lenses , Unionidae , Humans , Animals , Family Practice , Physicians, Family
13.
Nat Commun ; 15(1): 2924, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575565

ABSTRACT

Biological nitrogen fixation by free-living bacteria and rhizobial symbiosis with legumes plays a key role in sustainable crop production. Here, we study how different crop combinations influence the interaction between peanut plants and their rhizosphere microbiota via metabolite deposition and functional responses of free-living and symbiotic nitrogen-fixing bacteria. Based on a long-term (8 year) diversified cropping field experiment, we find that peanut co-cultured with maize and oilseed rape lead to specific changes in peanut rhizosphere metabolite profiles and bacterial functions and nodulation. Flavonoids and coumarins accumulate due to the activation of phenylpropanoid biosynthesis pathways in peanuts. These changes enhance the growth and nitrogen fixation activity of free-living bacterial isolates, and root nodulation by symbiotic Bradyrhizobium isolates. Peanut plant root metabolites interact with Bradyrhizobium isolates contributing to initiate nodulation. Our findings demonstrate that tailored intercropping could be used to improve soil nitrogen availability through changes in the rhizosphere microbiome and its functions.


Subject(s)
Fabaceae , Nitrogen Fixation , Fabaceae/microbiology , Plant Root Nodulation , Soil , Soil Microbiology , Symbiosis , Arachis , Vegetables , Nitrogen , Root Nodules, Plant/microbiology
14.
Mol Plant Pathol ; 25(4): e13454, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619507

ABSTRACT

Apple Glomerella leaf spot (GLS) is an emerging fungal disease caused by Colletotrichum fructicola and other Colletotrichum species. These species are polyphyletic and it is currently unknown how these pathogens convergently evolved to infect apple. We generated chromosome-level genome assemblies of a GLS-adapted isolate and a non-adapted isolate in C. fructicola using long-read sequencing. Additionally, we resequenced 17 C. fructicola and C. aenigma isolates varying in GLS pathogenicity using short-read sequencing. Genome comparisons revealed a conserved bipartite genome architecture involving minichromosomes (accessory chromosomes) shared by C. fructicola and other closely related species within the C. gloeosporioides species complex. Moreover, two repeat-rich genomic regions (1.61 Mb in total) were specifically conserved among GLS-pathogenic isolates in C. fructicola and C. aenigma. Single-gene deletion of 10 accessory genes within the GLS-specific regions of C. fructicola identified three that were essential for GLS pathogenicity. These genes encoded a putative non-ribosomal peptide synthetase, a flavin-binding monooxygenase and a small protein with unknown function. These results highlight the crucial role accessory genes play in the evolution of Colletotrichum pathogenicity and imply the significance of an unidentified secondary metabolite in GLS pathogenesis.


Subject(s)
Colletotrichum , Fabaceae , Malus , Phyllachorales , Colletotrichum/genetics , Virulence/genetics , Genomics
15.
Mol Plant Pathol ; 25(4): e13452, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619823

ABSTRACT

Phytophthora root and stem rot of soybean (Glycine max), caused by the oomycete Phytophthora sojae, is an extremely destructive disease worldwide. In this study, we identified GmEIL1, which encodes an ethylene-insensitive3 (EIN3) transcription factor. GmEIL1 was significantly induced following P. sojae infection of soybean plants. Compared to wild-type soybean plants, transgenic soybean plants overexpressing GmEIL1 showed enhanced resistance to P. sojae and GmEIL1-silenced RNA-interference lines showed more severe symptoms when infected with P. sojae. We screened for target genes of GmEIL1 and confirmed that GmEIL1 bound directly to the GmERF113 promoter and regulated GmERF113 expression. Moreover, GmEIL1 positively regulated the expression of the pathogenesis-related gene GmPR1. The GmEIL1-regulated defence response to P. sojae involved both ethylene biosynthesis and the ethylene signalling pathway. These findings suggest that the GmEIL1-GmERF113 module plays an important role in P. sojae resistance via the ethylene signalling pathway.


Subject(s)
Fabaceae , Phytophthora , Transcription Factors/genetics , Glycine max/genetics , Ethylenes , Plants, Genetically Modified
16.
Mol Plant Pathol ; 25(4): e13457, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619873

ABSTRACT

Glomerella leaf spot (GLS), a fungal disease caused by Colletotrichum fructicola, severely affects apple (Malus domestica) quality and yield. In this study, we found that the transcription factor MdWRKY71 was significantly induced by C. fructicola infection in the GLS-susceptible apple cultivar Royal Gala. The overexpression of MdWRKY71 in apple leaves resulted in increased susceptibility to C. fructicola, whereas RNA interference of MdWRKY71 in leaves showed the opposite phenotypes. These findings suggest that MdWRKY71 functions as a susceptibility factor for the apple-C. fructicola interaction. Furthermore, MdWRKY71 directly bound to the promoter of the salicylic acid (SA) degradation gene Downy Mildew Resistant 6 (DMR6)-Like Oxygenase 1 (DLO1) and promoted its expression, resulting in a reduced SA level. The sensitivity of 35S:MdWRKY71 leaves to C. fructicola can be effectively alleviated by knocking down MdDLO1 expression, confirming the critical role of MdWRKY71-mediated SA degradation via regulating MdDLO1 expression in GLS susceptibility. In summary, we identified a GLS susceptibility factor, MdWRKY71, that targets the apple SA degradation pathway to promote fungal infection.


Subject(s)
Fabaceae , Malus , Phyllachorales , Malus/genetics , Phenotype , Salicylic Acid
17.
PLoS One ; 19(4): e0301981, 2024.
Article in English | MEDLINE | ID: mdl-38626155

ABSTRACT

Orobanche foetida Poiret is the main constraint facing faba bean crop in Tunisia. Indeed, in heavily infested fields with this parasitic plant, yield losses may reach 90%, and the recent estimation of the infested area is around 80,000 ha. Identifying genes involved in the Vicia faba/O. foetida interaction is crucial for the development of effective faba bean breeding programs. However, there is currently no available information on the transcriptome of faba bean responding to O. foetida parasitism. In this study, we employed RNA sequencing to explore the global gene expression changes associated with compatible and incompatible V. faba/O. foetida interactions. In this perspective, two faba bean varieties (susceptible and resistant) were examined at the root level across three stages of O. foetida development (Before Germination (BG), After Germination (AG) and Tubercule Stage (TS)). Our analyses presented an exploration of the transcriptomic profile, including comprehensive assessments of differential gene expression and Gene Ontology (GO) enrichment analyses. Specifically, we investigated key pathways revealing the complexity of molecular responses to O. foetida attack. In this study, we detected differential gene expression of pathways associated with secondary metabolites: flavonoids, auxin, thiamine, and jasmonic acid. To enhance our understanding of the global changes in V. faba response to O. foetida, we specifically examined WRKY genes known to play a role in plant host-parasitic plant interactions. Furthermore, considering the pivotal role of parasitic plant seed germination in this interaction, we investigated genes involved in the orobanchol biosynthesis pathway. Interestingly, we detected the gene expression of VuCYP722C homolog, coding for a key enzyme involved in orobanchol biosynthesis, exclusively in the susceptible host. Clearly, this study enriches our understanding of the V. faba/O. foetida interaction, shedding light on the main differences between susceptible and resistant faba bean varieties during O. foetida infestation at the gene expression level.


Subject(s)
Fabaceae , Lactones , Orobanche , Vicia faba , Vicia faba/parasitology , Orobanche/genetics , Plant Breeding , Fabaceae/genetics , Transcriptome
18.
Planta ; 259(5): 123, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622376

ABSTRACT

MAIN CONCLUSION: Pigeonpea has potential to foster sustainable agriculture and resilience in evolving climate change; understanding bio-physiological and molecular mechanisms of heat and drought stress tolerance is imperative to developing resilience cultivars. Pigeonpea is an important legume crop that has potential resilience in the face of evolving climate scenarios. However, compared to other legumes, there has been limited research on abiotic stress tolerance in pigeonpea, particularly towards drought stress (DS) and heat stress (HS). To address this gap, this review delves into the genetic, physiological, and molecular mechanisms that govern pigeonpea's response to DS and HS. It emphasizes the need to understand how this crop combats these stresses and exhibits different types of tolerance and adaptation mechanisms through component traits. The current article provides a comprehensive overview of the complex interplay of factors contributing to the resilience of pigeonpea under adverse environmental conditions. Furthermore, the review synthesizes information on major breeding techniques, encompassing both conventional methods and modern molecular omics-assisted tools and techniques. It highlights the potential of genomics and phenomics tools and their pivotal role in enhancing adaptability and resilience in pigeonpea. Despite the progress made in genomics, phenomics and big data analytics, the complexity of drought and heat tolerance in pigeonpea necessitate continuous exploration at multi-omic levels. High-throughput phenotyping (HTP) is crucial for gaining insights into perplexed interactions among genotype, environment, and management practices (GxExM). Thus, integration of advanced technologies in breeding programs is critical for developing pigeonpea varieties that can withstand the challenges posed by climate change. This review is expected to serve as a valuable resource for researchers, providing a deeper understanding of the mechanisms underlying abiotic stress tolerance in pigeonpea and offering insights into modern breeding strategies that can contribute to the development of resilient varieties suited for changing environmental conditions.


Subject(s)
Droughts , Fabaceae , Plant Breeding , Fabaceae/genetics , Genomics/methods , Heat-Shock Response
19.
PLoS One ; 19(4): e0297547, 2024.
Article in English | MEDLINE | ID: mdl-38625963

ABSTRACT

Most legumes are able to develop a root nodule symbiosis in association with proteobacteria collectively called rhizobia. Among them, the tropical species Aeschynomene evenia has the remarkable property of being nodulated by photosynthetic Rhizobia without the intervention of Nod Factors (NodF). Thereby, A. evenia has emerged as a working model for investigating the NodF-independent symbiosis. Despite the availability of numerous resources and tools to study the molecular basis of this atypical symbiosis, the lack of a transformation system based on Agrobacterium tumefaciens significantly limits the range of functional approaches. In this report, we present the development of a stable genetic transformation procedure for A. evenia. We first assessed its regeneration capability and found that a combination of two growth regulators, NAA (= Naphthalene Acetic Acid) and BAP (= 6-BenzylAminoPurine) allows the induction of budding calli from epicotyls, hypocotyls and cotyledons with a high efficiency in media containing 0,5 µM NAA (up to 100% of calli with continuous stem proliferation). To optimize the generation of transgenic lines, we employed A. tumefaciens strain EHA105 harboring a binary vector carrying the hygromycin resistance gene and the mCherry fluorescent marker. Epicotyls and hypocotyls were used as the starting material for this process. We have found that one growth medium containing a combination of NAA (0,5 µM) and BAP (2,2 µM) was sufficient to induce callogenesis and A. tumefaciens strain EHA105 was sufficiently virulent to yield a high number of transformed calli. This simple and efficient method constitutes a valuable tool that will greatly facilitate the functional studies in NodF-independent symbiosis.


Subject(s)
Fabaceae , Fabaceae/genetics , Fabaceae/microbiology , Agrobacterium tumefaciens/genetics , Symbiosis/genetics , Phenotype , Vegetables/genetics , Transformation, Genetic , Plants, Genetically Modified
20.
Compr Rev Food Sci Food Saf ; 23(3): e13342, 2024 May.
Article in English | MEDLINE | ID: mdl-38634173

ABSTRACT

Mitochondrial dysfunction increasingly becomes a target for promoting healthy aging and longevity. The dysfunction of mitochondria with age ultimately leads to a decline in physical functions. Among them, biogenesis dysfunction and the imbalances in the metabolism of reactive oxygen species and mitochondria as signaling organelles in the aging process have aroused our attention. Dietary intervention in mitochondrial dysfunction and physical decline during aging processes is essential, and greater attention should be directed toward healthful legume intake. Legumes are constantly under investigation for their nutritional and bioactive properties, and their consumption may yield antiaging and mitochondria-protecting benefits. This review summarizes mitochondrial dysfunction with age, discusses the benefits of legumes on mitochondrial function, and introduces the potential role of legumes in managing aging-related physical decline. Additionally, it reveals the benefits of legume intake for the elderly and offers a viable approach to developing legume-based functional food.


Subject(s)
Fabaceae , Mitochondrial Diseases , Humans , Aged , Aging , Longevity , Mitochondria/metabolism , Vegetables , Mitochondrial Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL